Controllability of the Ornstein-Uhlenbeck equation
نویسندگان
چکیده
In this paper we study the controllability of the following controlled Ornstein–Uhlenbeck equation z t = 1 2 z − −x, ∇z + ∞ n=1 |β|=n u β (t)b, h β γ d h β , t > 0, x ∈ R d , where h β is the normalized Hermite polynomial, b ∈ L 2 (γ d), γ d (x) = e −|x| 2 π d/2 is the Gaussian measure in R d and the control u ∈ L 2 (0, t 1 ; l 2 (γ d)), with l 2 (γ d) the Hilbert space of Fourier–Hermite coefficient l 2 (γ d) =
منابع مشابه
New Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملA ug 2 00 7 Densities for Ornstein - Uhlenbeck processes with jumps 8 august 2007
Abstract: We consider an Ornstein-Uhlenbeck process with values in Rn driven by a Lévy process (Zt) taking values in R d with d possibly smaller than n. The Lévy noise can have a degenerate or even vanishing Gaussian component. Under a controllability condition and an assumption on the Lévy measure of (Zt), we prove that the law of the Ornstein-Uhlenbeck process at any time t > 0 has a density ...
متن کاملMinimum L1-norm Estimation for Fractional Ornstein-Uhlenbeck Type Process
We investigate the asymptotic properties of the minimum L1-norm estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by a fractional Brownian motion.
متن کاملExponential Ergodicity and β-Mixing Property for Generalized Ornstein-Uhlenbeck Processes
The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the exponentially β-mixing property. Our results can cover...
متن کاملSequential Estimation for Fractional Ornstein-Uhlenbeck Type Process
We investigate the asymptotic properties of the sequential maximum likelihhod estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by fractional Brownian motion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IMA J. Math. Control & Information
دوره 23 شماره
صفحات -
تاریخ انتشار 2006